Daniele Gibin

Università di Padova and Istituto Nazionale di Fisica Nucleare, Sezione di Padova on behalf of the HARP Collaboration

"Neutrino Hadroproduction (HARP)"

- HARP: physics case for an hadroproduction experiment
- Measuring a cross section:
 - K2K AI results
 - MiniBooNE preliminary results
- on going analysis:
 - tantalum large angle analysis for Neutrino Factory
 - the next
- Conclusions

HARP at CERN PS: physics case

New era in Hadron Production for Neutrino Physics: a systematic study of secondary hadron production by incident p and π^{\pm} with

- *p*_{beam} from 1.5 to 15 GeV/c (more than 420 M pot)
- large range of target materials, from H to Lead
- measurements of targets of existing ν beams: K 2K and MiniBooNE
- Inputs for the prediction of neutrino fluxes for K2K and MiniBooNE experiments
- Inputs for the precise calculation of atmospheric neutrino flux
- π, K yields for the design of the proton driver/target system of Neutrino Factories and super-beams
- Input for Monte Carlo generators

2

HARP detector: large acceptance, P.Id capabilities, redundancy

TPC + *Forward Spectrometer:* $a 4\pi$ *experiment!!*

Beam Instrumentation: counting protons on target

Beam Tof (three sets of counters)

- π /K/p separation at ${\rm low~energy}$
- 70 ps interaction time resolution

MWPCs

(two) Beam Cherenkov :

- $\pi\,$ K separation at high energy
- \sim 100% e- π tagging efficiency

D. Gibin, NOVE06, Venice February 7-10, 2005.

Measurement of π^+ production cross section in Al (5% λ)@ 12.9 GeV/c

 M^{-1} corrects for PID efficiency and Migration, Acceptance and Reconstruction Efficiency, Absorption-Decay, Tertiary prod., e-Veto eff and Bck subtraction, detector resolution

i,j are the momentum and angle bins, α is the particle type, Primes for recontructed quantities

- Event Selection & Counting protons
- Reconstructing Tracks
- π identification and background subtraction

- Corrections
 - Tracking Reconstruction Efficiency
 - Acceptance
 - PID efficiency and purity
 - Empty target subtraction
 - Correction for Tertiaries

- ...

Reconstruction of tracks in p θ **bins**

measured (downstream İS Top view - *p* NDC2 NDC1 NDC5 7 dipole magnet segment + upstream constraint) target - charge is positive • B beam - PID detectors (TOF,CHE) $\rightarrow \pi$ reconstruction efficiency o_p (GeV/c) Data - MC 1.5 0.4 1 0.2 0.5 ٥<u>-</u>0.2 -0.15 -0.1 0.05 0.05 o 0.1 0.15 0.2 2.5 7.5 10 12.5 15 q, (rad) P (GeV/c) $\sigma_{\theta}\left(mrad\right)$ - DATA reconstruction efficiency 1.2 Data OMC MC з 0.4 C 0.6 0 0. 0.75≤ p ≤ 6.5 GeV/c -**210** ≤ θ, ≤ 0 mrad ò 0.2 < 80 mrado 2.5 5 7.5 10 12.5 15 P (GeV/c) p (GeV/c)

the phase space is splitted into bin far larger than the momentum & angular resolution: 0.5 GeV/c bins p < 4 GeV/c, 1.5 GeV/c bins for $5 \div 6.5$ GeV/c and 30 mrad angular bins

\Rightarrow correction matrix M^{-1} almost diagonal in p heta

D. Gibin, NOVE06, Venice February 7-10, 2005.

Particle identification

Redundancy and overlaps between Pid detectors

D. Gibin, NOVE06, Venice February 7-10, 2005.

Particle identification in HARP

Detector response from data & combined PID probability

Pure Samples can be selected in data (Empty target and interaction events)

PID performance and migration matrix

 π efficiency and purity decribed by the $(M^{id})^{-1}$ PiD term of the migration matrix, acting as:

$$\begin{pmatrix} n^{\pi'} \\ n^{p'} \end{pmatrix} = \begin{pmatrix} M_{\pi\pi} & M_{\pi p} \\ M_{p\pi} & M_{pp} \end{pmatrix} \cdot \begin{pmatrix} n^{\pi} \\ n^{p} \end{pmatrix}$$

 $M_{\pi\pi}$: fraction of observed π 's that are true π s $M_{\pi p}$: fraction of observed π 's that are true ps $M_{p\pi}$: fraction of observed p's that are true π s M_{pp} : fraction of observed p's that are true ps

- electrons: vetoed
- kaons: subtracted

both are accounted for by a correction factor

Error Analysis: Evaluation of the measurement precision

systematic error evaluated for all the terms of the cross-section, to quantify the precision of both differential and total cross section

- $\frac{d^2 \sigma^{\pi}}{dp \, d\Omega}(p, \theta)$, typical error: $\delta_{diff} = 8.2$ %
- σ^{π} for 0.75 GeV/c and $<math>30 < \theta < 210$ mrad, error on total cross-section: $\delta_{int} = 5.8$ %

error category	error source	δ_{diff} (%)	δ_{int} (%)
statistical	Al target statistics	1.6	0.3
	empty target sub. (stat.)	1.3	0.2
track yield corr.	rec. eff.	0.8	0.4
	π , p absorption	2.4	2.6
	terziary subtract.	3.2	2.9
	empty target sub. (syst.)	1.2	1.1
part. identif.	PID prob. cut	0.2	0.2
	K subtract.	0.3	0.1
	e veto	2.1	0.5
	$\pi,p,$ ID corr.	2.5	0.4
momentum rec.	momentum scale	3.0	0.3
	momentum resolution	0.6	0.6
overall normaliz.		4.0	4.0
all		8.2	5.8

dominant error contributions to δ_{diff} :

- overall normalization
- terziary subtraction
- momentum scale

cross-section for K2K thin target @ 12.9 GeV/c (K2K) & SW parametrization

$$\frac{d^2\sigma(p+Al\to\pi^++X)}{dp\,d\Omega}(p,\theta) = c_1 p^{c_2} (1-\frac{p}{p_{beam}}) \exp\left[-c_3 \frac{p^{c_4}}{p_{beam}^{c_5}} - c_6 \theta(p-c_7 p_{beam} \cos^{c_8} \theta)\right]$$

	Parameter	Value		sr))	600		20 (0	600		(0.00 mm d
	c_1	(4.4 ± 1.3)	$\cdot 10^2$	GeV/c	400		30-60 mrad			60-90 mrad
	c_2	(8.5 ± 3.4)	$\cdot 10^{-1}$	(mb/(200			200		
	c_3	(5.1 ± 1.5)	.3)	(Ωb dD)	-	-	<u>.</u>	-	1	
	$c_4 = c_5$	(1.78 ± 0.6)	.75)	d ² σ ^π / (0 L 0 600 ₁) 2	4 6	0 0 600	2	4 6
			21)			_	90-120 mrad	-		120-150 mrad
	c_6	(4.43 ± 0.5)	.31)		400			400	ц.	
	C_7	(1.35 ± 0.29)	$) \cdot 10^{-1}$		-			_	- + -	
		(2, 27 + 0, 0)) 101		200			200	1. .	
	<i>C</i> 8	(3.37 ± 0.96)	$() \cdot 10^{1}$		-		·····	-	_ _	
					ol) 2	4 6	0_0^{1}	2	4 6
	Near Detector N	leutrinos	Far Detector Neut	rinos	600	 	150-180 mrad	600		180-210 mrad
400		400			400	- + .		400		
350		350 -			100	-		-		
300		300 -				•				
250		250			200	- •••		200		
150		150				-	-	_	Then .	
100		100			o) 2	4 6		2	4 6
50		50								p (GeV/c)
0	0 2 4	6 8 0	2 4	6	8 5	Sanford-Wan	g parame	trization	1 fit	I
	Pion Momentum (GeV/c)									

Pion Angle (mrad)

Physics impact: Far and Near ν fluxes at K2K

- similar E_{ν} spectra arising from K2K default (pre-HARP) and HARP S-W π^+ param.
- errors shown: HARP π^+ production uncertainties and MC statistics
- push to 1 % the systematics of Far to Near neutrino flux ratio associated to secondary particle production!

$p + Be \rightarrow \pi^+ + X$ cross-section & SW param. -PRELIMINARY

• primary protons: 7.3 M pot,

 $p_{beam}=8.9~{\rm GeV/c}$

- 5 % λ Be disc
- quite similar AI data analysis
 well covering MiniBooNE
 phase space

Comparing HARP with previous results

HARP results vs. previous data on $p + Al \rightarrow \pi^+ + X$

- restricted comparison to proton beam momenta close to K2K: $10 < p_{beam} <$ 15 GeV/c
- forward production pion: $\theta < 200 \text{ mrad}$
- —HARP Sanford-Wang param.
 at 12.9 GeV rescaled to p_{beam}
 of old experiments

.. reasonable agreement

HARP PRELIMINARY results vs. previous data on $p + Be \rightarrow \pi^+ + X$

... reasonable agreement, differencies for heta > 150 mrad

p (GeV/c)

HARP PRELIMINARY results vs. previous data on $p + Be \rightarrow \pi^+ + X$ (Continued)

600 60 600 60 $d^2\sigma^{\pi+}$ / (dp d\Omega) (mb / (GeV/c sr)) Cho 71 Cho 71 Cho 71 Cho 71 p_{beam}=12.4 GeV/c p_{beam}=12.4 GeV/c p_{beam}=12.4 GeV/c p_{beam}=12.4 GeV/c 450 450 450 450 $\theta=23 \text{ mrad}$ θ =38 mrad θ =55 mrad θ =89 mrad $\sigma_{\rm N} = 8\%$ $\Box \sigma_{N} = 8\%$ $\Box \sigma_{N} = 8\%$ \Box $\sigma_{N} = 8\%$ 300 300 300 300 150 150 150 150 600 600 600 600 Cho 71 Cho 71 Cho 71 Cho 71 p_{beam}=12.4 GeV/c p_{beam}=12.4 GeV/c p_{beam}=12.4 GeV/c p_{beam}=12.4 GeV/c 450 450 450 450 θ =105 mrad θ =139 mrad θ =172 mrad θ =206 mrad $\sigma_{\rm N} = 8\%$ $\sigma_{\rm N} = 8\%$ $\Box \sigma_{\rm N} = 8\%$ $\sigma_{\rm N} = 8\%$ 300 300 300 300 150 150 150 150 í٥ p (GeV/c)

... important variations w.r.t. Cho71 old data (Cho71 data are in disagrement also with BNL E910 ...)

Large angle analysis: the NuFact case

- Neutrino Factory design require the precise (< 5 %) measurement of p_t distribution of the pion yields from low energy protons on selected targets
- TPC response has been calibrated by pion, proton elastic scattering at 3 GeV/c

Ta π^{\pm} yield analysis, $p_{beam}=3$ GeV/c, $5\%\lambda$ - PRELIMINARY

- only one beam particle identified as proton by MWPC + TOF beam counters
- event selection: large angle interaction by ITC ($\epsilon_{ITC} = 99$ %)
- cuts on the event spill to reject events strongly affected by the dynamic distorsions

 $\rightarrow p_t$ scan of π^+ (-) and π^- (-) yields for different production angle θ (15 degree bins)

Conclusions

- HARP at CERN PS collected data over a wide range of targets and beam momenta to measure π and K production cross sections, relevant for the present K2K and MiniBooNE neutrino beams and for future SuperBeams and Neutrino Factories.
- completed the thin target analysis of forward π⁺ production for AI (@ 12.9 GeV/c, K2K) and Be (@ 8.9 GeV/c, MiniBooNE): cross sections, measured with 6 % integral and 8.2 % differential uncertainty, are compatible with and more precise than older data available for Be and AI.
 → physics impact in K2K: strong reduction of systematics of Far to Near neutrino flux ratio associated to secondary particle production!
- on-going studies. Thick and replica K2K and MiniBooNE targets. Study of A and energy dependence. Inclusion of C data expected to be a relevant contribution to the understanding of atmospheric neutrino fluxes.
- large angle analysis already produced very promising results. The elastic scattering provides a clean way to calibrate the momentum scale of the detector. Preliminary π^+/π^- yields have been obtained for Ta, that can be used for NuFact. The goal is to give an experimental input to choose the proton driver energy of the Neutrino Factory.

Correction Factors

Correction Type	Impact On Cross Section	Method
Momentum Resolution	Shape	MC
Particle Efficiency	15% up	Data
Geometric Acceptance	$\sim 100-160\%$ up	MC/Analytic
Pion ID	Efficiency: 5-10% up	Data
Pion ID	$\pi\text{-}\mathrm{proton}\ \mathrm{migration}{:}<5\%$ down	Data
Absorption/decay	10-30% up	MC
Tertiary Production	<5% down	MC
Electron Veto eff.	5-10% up	MC
Kaon Subtraction	1-3% down	Data/MC
Target-out Subtraction	$\sim 20\%$	Data